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INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment from incomplete
combustion of fossil fuels and other industrial sources. The genotoxic impact of PAHs depends on
their metabolism to more reactive intermediates. The major pathway by which ingested or inhaled
PAHs are metabolized, is the stepwise oxidative activation by the cytochrome P450 isozymes,
CYP1A1l and CYP1BI, followed by detoxification by phase II enzymes (Nebert and Gonzales,
1987). The highly reactive intermediate formed by CYP1Al or CYP1B1 can bind to DNA, the
resulting DNA adduct can cause a mutation that, if in a relevant gene, could initiate cancer. These
adducts are considered biomarkers of potential cancer risk. Expression of both CYPI/A4/ and
CYPIB1 is highly inducible by PAHs and other environmental toxins, such as dioxin (Safe, 1995).
CYPIB1 gene expression analysis captures the convergence of multiple genetic and environmental
factors that influence metabolic enzyme levels (Gonzalez and Gelboin, 1994; Whitlock, 1999).
PAH-DNA adducts provide the most direct link between exposure to PAHs and cancer and can be
used as biomarkers of exposure and effect. CYP1B1 could be a key enzyme in the activation of
carcinogens in the breast and therefore play a role in the development of breast cancer: the
CYPIBI gene is highly expressed in human breast tissue (Larsen et al., 1998; Goth-Goldstein et
al., 2003); besides activating lipophilic environmental carcinogens, such as PAHs and aromatic
amines, the CYP1B1 enzyme hydroxylates 17 B-estradiol at the C-4 position to the potentially
carcinogenic 4-hydroxy estradiol (Shimida et al.,1996; Hayes et al., 1996).

Because the genotoxic impact of PAH depends on their metabolism, high CYP1B1 enzyme levels
may result in increased formation of PAH-DNA adducts in breast tissue, subsequently leading to
development of breast cancer {Lagueux et al., 1999). We have investigated the underlying
molecular mechanisms of the relationship between PAH exposure and breast cancer risk. Because
the influence of PAH exposure on disease risk would be easier to detect in a highly exposed
population, we chose as study site Porto Alegre in the South of Brazil where we suspected that
frequent barbecued meat consumption, smoking and limited air pollution controls might lead to
higher PAH exposure of women than in the U.S.. Using a clinic-based case-control design, breast
tissue was obtained from female patients undergoing either mastectomy or reduction mammoplasty
surgery in Porto Alegre, Brazil. PAH exposure and potential confounding factor data were
collected for all cases and controls via medical chart review and an interviewer-administered
questionnaire, To characterize molecular level interindividual variation in PAH metabolism,
CYPIBI gene expression and PAH-DNA adducts were measured in the surgically obtained
histologically normal breast tissue from women undergoing mastectomy or reduction
mammoplasty surgery.

BODY

Task 1: 1dentify study participants undergoing reduction mammoplasties or mastectomies
and collect data and tissue

Two collaborating surgeons, one specializing in breast diseases, the other in breast reconstruction
and reduction mammoplasty, identified candidate patients invited them to participate in the study.
To assure that procedures were consistently followed at the recruitment hospitals in Porto Alegre,



Brazil, various forms and protocols (Recruitrnent Form listing eligibility criteria, Participant
Tracking Form, a questionnaire, Medical abstraction form, protocals for collection and processing
of breast tissue, blood and urine) were developed (Forms and Protocols submitted as part of the
2004 Annual Report). Using these various protocols two part-time Research Coordinators were
trained to oversee day-to-day operations of the study, which included: (1) getting consent from
study participants prior to surgery, (2) collecting, processing and storing biologic specimens
immediately after surgery, (3) coordinating interviews, (4) reviewing and abstracting information
from participants’ medical records, and (5) managing data and study records. Informed consent to
participate in the study was obtained before surgery. Urine samples were collected before surgery,
breast tissue and blood samples were obtained during scheduled surgeries. The collected
specimens were processed by the clinical research coordinator and stored in a stabilizing buffer
(RNALater, Ambion) at -20°C until shipment to LBNL.

Recruitment of Study Participants: Based on power calculation to test our hypothesis our goal
had been to collect during the span of one year normal breast tissue from at least 37 cases
undergoing mastectomy and 74 controls undergoing reduction mammoplasty surgery {or
alternatively 74 cases and 34 controls) with the following inclusion criteria for all: no prior
diagnosis of cancer, usual residence in the state of Rio Grande do Sul, Brazil; additionally for
cases: no chemotherapy or radiation therapy prior to mastectomy; additionally for controls: no
history of atypical hyperplasia, atypia, or other benign proliferative disease.

Due to reasons not anticipated in the study design and that were beyond our control, enrollment of
participants was much slower than anticipated and even though we extended the recruitment time
to three years we only recruited 54 cases and 18 controls. The reason for the slow recruitment of
cases was a change in standard of care for women undergoing a full mastectomy surgery since we
designed the study, in that chemotherapy is now administered before surgery. This conflicted with
our eligibility criteria of no prior chemotherapy. Therefore, we only collected tissue from women
undergoing partial mastectomy. Recruitment of controls turned out to be even more difficult. Our
Brazilian Co-Investigators have given two reasons: (1) the economic situation in Brazil made the
often elective surgery less affordable for many women; (2) a change in beauty perception had
occurred in recent years making breast enlargement rather than reduction a more frequent choice.

In spite of training the Research Coordinators in the procedure for consenting we found some
deficiencies when reviewing all study records: we had to exclude 3 control participants for whom
the consent forms could not be located. Further, for one woman it was discovered after specimen
collection that she had had prior chemotherapy, and only the CYP1B1 polymorphism results were
included. For another 4 participants the date of consent was unclear. So, only the information
collected by questionnaire or Medical Record Abstraction was used, but not data obtained from
tissue analysis. The consent forms of 8 participants continue to reside with former co-investigator
Dr. Christine Erdmann at the University of Michigan and we could not access and include these
data. This left 46 cases and 15 controls for descriptive data collection and 43 cases and 13 controls
for tissue analysis,

Characteristics of Study Participants: Through a questionnaire administered by trained
interviewers and through medical record abstraction we collected information regarding



residential, occupational, dietary, environmental exposure, medical histories and known or
suspected breast cancer risk factors.

Table 1. Characteristics of study population

Cases Controls

n=46 n=15
Age, mean + SD 53.26+9.2 47.27+11.20
(range) (37-71) (27-70)
Past menopause 20 (63%) 7 (47%)
Education —highest degree 0f43 Of 13
High school completed 9 (21%) 7 (54%)
University degree 27 (63%) 4 (31%)
Family history of breast cancer 0Of 46 Of 13
In 1% degree relative 6 (13%) 1 (8%)
In 2™ degree relative 10 (22%) 3 (23%)
Benign breast disease before 4 of 44 (9%) 0of 13
SUrgery
Apge at menarche 12.2 12.2
Apge at 1% child 26.2 + 5.6 (of 39) 248 +4.0(0of12)
# of birth 2.2 2
Total months of breastfeeding 10.0 (0 - 44) 8.5 (0—30)
Nulliparous 7 (15 %) 1(7.7 %)
Use of HRT 14 (48 %) 4 (57 %)
Exercise (in hours per week) 2.2 2.5
Table 2: Potential Exposure to PAHs

Cases Controls

N =43 N=13
Heating/Cooking with 9 (21 %) 4 (31 %)
wood/open fire
Smoking — Former smoker 6 (14 %) 4F (31 %)

Current smoker 9 (21 %) 2C (15 %)

Second Hand Smoke 11 (25%) 5 (38 %)
Diet - Portions per week of
Grilled meat 3.3 (0-13) 2.2{(0~8)
Smoked meat 1.7 (0-14) 0.1(0-1
Toasted cheese and bread 3.7(0-26) 0.8(0-3)
Total 8.7 3.1
Use of coal tar containing
shampoo 3 times or more per 2 1

week for last 10 years




Characteristics of breast tumors:

Tumor Histology: 32 (70%) invasive ductal carcinoma, 7 (15%) DCIS, 7 (15 %) other
Tumor Size: 0.1 — 5.1 cm

Axilary node involvement: for 8 (17 %)

ER status: positive 41, negative 5; PR status: positive 42, negative 4; ER* PR*: 40 (87 %)
P53 status: positive in 12 of 44 (27 %)

Her2 overexpression: 6 of 44 (14 %)

From the questionnaires we learned that all participants were white and were mostly well educated
with about half of participants holding a university degree and frequently working as teachers, As
can be seen in Table 1, the control population is somewhat younger (mean 47 versus 53). Alcohol
consumption in participants was low with 4 women reporting that they drank 0-1 drink per day and
two women who reported that they drank 2 or more drinks per day.

Most of the study participants when asked wanted to be informed about the results of the study and
we are preparing a document that can be shared with them.

Task 2: Characterize the breast tissue samples in respect to CYPIBI expression and CYPIBI
polymorphism

a. Isolate DNA and RNA from breast epithelial cells

DNA was isolated by the Proteinase K - phenol/chloroform methods from the 57 specimens
received. We had originally proposed to isolate the DNA together with RNA in the TRI Reagent
procedure, but found that this method yielded only small amounts of low-quality DNA. DNA was
quantitated and its purity determined by its 260/280 nm absorption. Samples were aliqoted for later
measurements of CYP1B1 genotype and DNA adducts and stored at -80°C.,

Total RNA of the 57 specimens was isolated using TRI Reagent following the manufacturer’s
protocol (Molecular Research Center, Inc., Cincinnati, OH) and RNA samples stored at -80°C.
The quality and quantity of RNA was determined spectrophotometrically.

b. Reverse transcribe RNA and
¢. Measure CYPIBI gene expression

Breast tissue specimens represent a complex mixture of varying cell types and this mixture differs
between individuals. We had originally planned to evaluate CYP/BI expression levels relative to
the f-actin housekeeping gene, but found that f-actin expression varied considerably between
breast tissue fractions and therefore could not be used (see Progress Report 2004).

Instead of determining CYPIB/] expression levels relative to a housekeeping gene, we quantitated
the absolute amount of CYP1BI1 transcript found in each specimen using real-time RT-PCR (with
the LightCycler instrument) and as quantitation standard (QS) a cloned CYP1B1 PCR fragment.
Each LightCycler run included a dilution series of this standard. The standard and the CYP1B1
gene transcript were reverse transcribed and amplified together at equal efficiencies to control for
each step of the assay. The CYP1B1 expression level in an unknown sample was determined by



extrapolating from a curve produced from the dilution series of the quantitation standard. To
control for variations in specimen quantities, an equal amount of total RNA isolated from each
specimen was added to each RT-PCR reaction.

Two possible sources of variation in the quantitative PCR assay were characterized:

(1) reproducibility of the QS dilution series and (2) variability in the RNA isolation.

When analyzing a dilution series of the QS at five different concentration levels (from 10,000 fg to
1 {g}, each in triplicate the variance was less than 1% at each concentration level (see Progress
Report 2006). To measure the variability in the isolation procedure, the RNA from one specimen
was isolated in triplicate and then analyzed by the RT-PCR assay for CYP1B1. The variance in
transcript level was 6.6 %.

RNALater turned out to be very effective in preserving the RNA in the specimens, so that even
specimens from the first shipment, which arrived at room temperature, provided RNA and the
quantitation of CYP1B1 transcript was comparable to repeat measurements with additional tissue
sent in the second shipment.

Of the 56 breast tissue specimens analyzed for CYP1B1 transcript levels, 6 did not give any results
or only unspecific PCR product. The values for the 50 specimens that gave results are summarized
in Table 3 and the distribution of expression levels shown in Figure 1.

Table 3. CYPIB1 expression in 50 breast tissue specimens analyzed. Transcript levels are _
expressed as fg/500ng total RNA used in the reverse transcription.

CYPIBI CYPIBI1 range
Mean (SD) Median
Total (n = 50) 19.9 (20.1) 15.46 0.06 —73.7
Control (n=12) 14.0 (15.7) 7.56 0.08 - 38.2
Cases (n = 38) 21.8(21.2) 20.22 0.06 —73.7
Inv. Duct. Carc. (26) 16.5(17.3) 0.06—68.95
DCIS (n = 6) 40.6 (24.5) 0.54 -73.7

As we had already observed previously (Goth-Goldstein et al., 2003), expression levels vary over a
broad range. We observed a 1000 fold variation. The mean and median transcript level of controls
was lower than that of cases, but the difference was statistically not significant (p-value = 0.1823).
This might be due to lack of statistical power. Surprisingly cases with DCIS had a higher
transcript level than cases with invasive ductal carcinoma (Table 3); but as we tested only six cases
with DCIS these results should be treated with caution,
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Figure 1: CYP1BI transcript levels displayed as histogram (top panel — cases, middle panel —
controls) and as cumulative distribution function (bottom panel; solid line - cases, dotted line -
controls)
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In contrast to our earlier findings (Goth-Goldstein et al., 2003) we did not observe lower CYP1B1
transcript levels in post menopausal women (Figure 2).
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Figure 2: CYP/BI expression levels displayed as function of age. Open triangles — nonsmokers,
solid triangles — current and former smokers

To test whether lymphocytes could be used as a predictor of CYPIBI expression levels in breast
tissue, blood samples had been collected from participants just before surgery, lymphocytes were
separated, stored in a stabilizing buffer and shipped to the US. However, we could isolate RNA
only from very few lymphocyte samples and it appears that separation procedure was not properly
performed. For the few samples which yielded sufficient RNA, CYP1B/ expression levels in
peripheral lymphocytes did not correlate with levels in breast tissue.

d. Perform CYPIB1 genotype analysis

Beside the overall level of exposure the genetic background of the exposed individual may alter
the health consequences of exposure. Genetic variation in the CYP1B1 gene may play a role in
interindividual differences in the metabolism of PAHs and estrogen.

Therefore the CYPIBI genotype at two polymorphic sites located in the catalytic side of the
enzyme at codon 432 (m1} and at codon 453 (m2) was analyzed by PCR /RFLP. Using the primers
described by Bailey et al. (1998, corrections, 1999) a 144 bp product is amplified. This product
can be used to detect both the m1 and m2 polymorphisms. The m1 (Val to Leu) polymorphism is
detected by digestion with the restriction enzyme Eco571, which produces 83bp and 61bp
fragments in the variant. The m2 (Asp to Ser) polymorphism is detected by digestion with Cac8I,
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which produces 106bp and 38bp fragments in the variant. The digestion products are separated on
a 10% native polyacrylamide gel stained with SYBR Gold (Figure 3).
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Figure 3: This gel shows the results for 3 specimens. Lane 1, 5, 8 contain the undigested PCR
product (144 bp), lane 2, 6 and 9 contain the m1 digestion products (144bp, 83 bp and 61 bp); lane
3,7, 10 contain the m2 digestion products (144bp, 106 bp and 38 bp). Extraneous bands are visible
at approximately 65 bp and 400 bp.
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The results from the genotype analysis are summarized in Table 4.

Table 4. CYP/BI genotype of 56 participants

CYPI1BI1 genotype Total Controls Cases
ml Val/Val 8 2 6
Val/Leu i3 10 23
Leu/Leu 15 1 14
m2 Asn/Asn 41 13 30
Asn/Ser 15 3(2) 13
Ser/Ser 0 0 0
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We calculated the allele frequencies for the two polymorphic sites and compared them to reports of
allele frequencies observed in different ethnic groups. The allele frequencies determined in our
small sample set resemble those seen in populations of European descent.

Table 5. Comparison of CYPIB] allele frequency in participants and in different ethnic groups
(given as means of several published reports)

Codon | Participants Africar{ E)escent Asian Descent ~* | Europ. Descent "
432 Val 0.437 0.703 0.154 0.404
432 Leu 0.563 0.297 0.846 0.596
453Asn 0.866 0.975 0.997 0.807
453Ser 0.134 0.025 0.003 0.193

'Bailey et al., 1998; “Inoue et al., 2000; * Mammen et al,,2003.

A number of studies have investigated the role of the CYP1B1 Val432Leu polymorphism in breast
cancer risk and results have been inconclusive. The small number of participants included in our
study does not allow any conclusions on the relationship of these polymorphisms to breast cancer
risk. A recent meta-analysis of all published case control studies found that results depended on
ethnic background and that a possible association of the Val genotype with breast cancer was
suggested only for Caucasians (Paracchini et al., 2007). This genotype was also identified as a
modifier of breast cancer risk in Finnish Caucasian women who smoke and/or who carry the N-
acetyl transferase slow acetylator genotype (Sillanp#i et al. 2007).

Task 3 Measure aromatic DNA adducts by 32P—postlabeling in breast tissue

Aliquots of DNA isolated from breast epithelial tissue were shipped to Dr. Donghui Li, a Co-
Investigator at the M.D. Anderson Cancer Center, for DNA adduct analysis. Aromatic DNA
adduct levels were determined by the nuclease P1-enhanced version of the **P-postlableing assay
as described in Li ef al. (1996), which involves stepwise DNA digestion to nucleosides, conversion
to **P-labeled deoxyribonucleosides, purification and separation by multidirectional TLC,

Adducts were detected and quantitated by image analysis. Adduct levels are expressed as a relative
adduct level (RAL) value, which is a ratio of the counts per minute (cpm) of modified nucleotides
over the cpm of total nucleotides in the reaction. The detection limit of adducts is 1 per 10°.

For 6 specimens, not enough DNA was obtained for adduct analysis. But even for the remaining
DNA samples problems were encountered. Preserving tissue in RNALater, a supersaturated salt
buffer, appears to be a problem for DNA adduct measurements. We presume that carry-over of
salts from the RNALater inhibits nuclease digestion of the isolated DNA. We modified the DNA
isolation protocol to using a low-salt buffer and reprecipitating the DNA to remove these salts. In 1
specimen no adducts were detected.

Table 6. PAH-DNA adducts determined in breast tissue {expressed as RAL x 109)

Mean (SD) Median Range
Total (n = 50) 32.3 (24.8) 25.66 3.6 - 100.6
Controls (n =13) 32.8 (29.6) 20.24 0.5 —92.9
Cases (n = 37) 32.2 (23.5) 30.07 3.6 —100.6
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Figure 4: Aromatic DNA adduct levels displayed as histogram (top panel — cases, middle panel —
controls) and as cumulative distribution function (bottom panel; solid line - cases, dotted line -
controls).
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We had chosen Porto Alegre, Brazil as study site because we expected high PAH exposures due to
limited air pollution controls and the local diet which includes frequent barbecued meat
consumption. However, even though DNA adduct measurements were done by the same method
and in the same laboratory, the mean DNA adduct levels (32.3 + 24.8 per 10° nucleotides, Table 6)
in women from this area were only one third of those found by Li et al. (1996) in normal breast
tissue of women with breast cancer (97.4 per 10° nucleotides, range 3.8 — 1737 per 10°
nucleotides) recruited from around Houston. In contrast to the findings of Li et al. (1996) we did
not find a difference in adduct levels of cases and controls (Table 6).

In the Long Island breast cancer study where PAH DNA adducts in blood samples of over 2200
women were measured by ELISA only a modest support for an association between PAH DNA
adducts and breast cancer development was found (Gammon et al., 2002).

A benzofa]pyrene-like DNA adduct observed by Li et al. (1996) in normal breast tissue of about
40 % of cases, but not in any controls, was detected only in a single participant (Figure 5). The
origin of this adduct is still unclear (Li et al., 2002). Interestingly, this woman, a nonsmoker and
control, reported using coal tar-containing shampoo daily in the last 10 years. Weyand et al. (2000)
found that coal tar-containing shampoo applied to the shaved backs of mice produced significant
levels of DNA adducts in lung tissue indicating dermal absorption of the coal tar. These various
adducts included a BaP-like adduct (Weyand, personal communication). This might indicate that
coal tar containing shampoo leads to dermal uptake of coal tar and if frequently used can result in
detectable DNA adducts at distant sites. We identified one other participant who reported using
coal tar containing shampoo daily, but the DNA adduct panel was not as pronounced as in the first

one. The amount of tissue obtained from the participant was not sufficient for further isolation and
characterization of this adduct.

Figure 5: *2P-labeled DNA adduct profile in normal breast tissue of woman who uses daily coal
tar containing shampoo.
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Figure 6: DNA adduct levels as function of age. Open triangles — nonsmokers, solid triangles —
current and former smokers

DNA adduct levels appear to increase with age. However, this might be due to the higher adduct
levels in smokers.

Task 4 Analyze data and write reports

Because the genotoxic impact of PAH depends on their metabolism, we hypothesized that high
CYPI1B1 enzyme levels result in increased formation of PAH-DNA adducts in breast tissue,
leading to increased development of breast cancer. We set out to test the following hypothesis:

1. Increased CYPIBI gene expression is associated with increased risk of invasive breast
CANCET.

2. Increased PAH-DNA. adduct formation is associated with increased risk of invasive breast
cancer,

3. Increased CYPIBI gene expression is associated with increased PAH-DNA adduct
formation in breast cells.

4. The positive association between CYPIB/ gene expression and increased risk of invasive
breast cancer is not due to genotype variation.

Regarding hypothesis (1), we report that the mean and median CYP1B1 transcript levels in breast
tissue of controls were lower than those of cases, but this difference was not statistically
significant. The p-value of the mean is greater than 0.18 (p-value on log(means) ~ 0.4, p-value on
variance ~ 0.3). This might be due to low sample number and lack of statistical power.
Significantly higher median levels of CYP1B1 expression in breast tissue of breast cancer patients
than in benign breast disease have been reported recently (Wen et al., 2007).

At the onset of our study we had assumed that CYPIB! gene expression was predominantly
regulated by the Ah receptor pathway (Gonzalez and Gelboin, 1994; Whitlock, 1999). In the
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meantime it has become apparent that the CYP1B/ gene expression regulation is very complex and
can include CYPIB] gene silencing through hypermethylation of promoter CpG islands
(Widschwendter et al., 2004) and translational repression through microRNA (Tsuchiya et al.,
2006).

Regarding hypothesis (2), there was no evidence for a difference in DNA adduct levels of cases
and controls) in contrast to the findings of Li et al. (1996). Comparing the means using the two-
tailed Student’s t-test the p-value = 0.95 (p-value on log (means) ~ 0.89, p-value on variance ~
0.29). This does not indicate that cases and controls are the same, but merely reflect the fact that
with so few control samples, the statistics do not allow us to discriminate between them.

In the Long Island breast cancer study where PAH DNA adducts in blood samples of over 2200
women were measured by ELISA only a modest support for an association between PAH DNA
adducts and breast cancer development was found (Gammon et al., 2002).

Regarding hypothesis (3), we did not find any indication of a linear relationship between CYPIB/
expression level and PAH-DNA adducts (Figure 7). The Spearman coefficients is p=-0.05.
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Figure 7: Level of CYPIBI expression (fg/500ng total RNA) versus aromatic DNA adducts (RAL
x 10%. Open triangles — controls; solid triangles — cases.

Hypothesis (4) could not be tested adequately because power was too limited to draw valid
conclusions, There was no difference in DNA adducts or CYPIBI gene expression levels between
the various CYP/B! polymorphic subgroup.

Clearly the major limitation of our study is the lack of statistical power as we did not succeed in
Tecruiting as many controls as planned. Also, cases and controls were not quite matched by age
(mean age 53 versus 47). While we had worried that the use of reduction mammoplasty patients as
controls might lead to a selection bias, because only wealthier patients would consider this
selective surgery, but it turns out that cases and controls were recruited from a similar socio-
gconomic group.
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Figure 9: The effect of diet (combined portions per week of grilled or smoked meat
and toasted cheese and bread) on DNA adducts levels (left panel) and CYP1B1 transcript level
(right panel). Solid triangles represent current or former smokers and open triangles nonsmokers.

We considered the influence of various PAH exposure sources on CYPIB1 gene expression and
PAH-DNA adduct levels in an exploratory analysis. Estimates of exposure to environmental PAHs
had been obtained through interviewer-administered questionnaires. As can be seen in Figure 8,
participants who identified themselves as current or former smokers showed increased DNA
adduct levels, and increased CYP1B1 transcript levels. In comparing the DNA adducts of smokers
versus nonsmokers, we see a statistically significant difference in the means (p-value on means =
0.034, p-value on log(means) ~ 0.024), but less so in the variance (p-value on variance ~ 0.09). If
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we extrapolate from these data, this may suggest that smokers have more DNA adducts, but the
inter-individual variation in DNA adduct levels are the same for smokers and nonsmokers due to
genetic variation in metabolism of PAHs and DNA repair of adducts. We do not see a difference
in the expression between smoker and nonsmokers (p-value on means = (.21, p-value on
log(means) ~ 0.43, p-value on variance ~ 0.45). This might suggest that the effect of smoking on
CYP1BI expression in breast tissue is not strong and would not be a powerful biomarker

for smoking.

No association of aromatic DNA adduct levels or CYP1B1 transcript level with heating or cooking
sources, second hand smoke exposure or intake of grilled, smoked or toasted food was observed
(Figure 9). Even in much larger studies the relationship between environmental exposures and
DNA adduct levels remain unclear (Steck et al., 2007).

Shantakumar et al.(2005) reported inconsistent associations between detectable PAH-DNA
adducts, such as grilled and smoked foods or a summary measure of total dietary BaP intake
during the year prior to the interview. They concluded that the PAH-DNA adducts detected in a
population-based sample of adult women with ambient exposure levels reflect some key residential
PAH exposure source, such as cigarette smoking. The authors suggested that season may be a
better surrogate of dietary PAH intake and recent ambient PAH exposure than the measures used
in the study. Because of this observation, we evaluated the association of DNA adduct levels and
season at time of tissue collection (Table 7). Surprisingly, we observed the highest adduct level in
winter and spring, even when all current and former smokers were eliminated and this seemed
independent from the indoor heating and cooking source reported.

Table 7: Seasonable variation in mean DNA adducts

Winter Spring Summer Fall
Tissue collected 6/22 —9/21 9/22 —12/21 12/22 - 3/21 3/22 - 6/21
between n n n n
All values 9 52843409 |11 3354141 |18 247+19.6 | 11 26.8+24.6
Current /former
smokers 5 427+£319 | 6 357+167 (11 176+118 | 9 17.1+104
excluded
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KEY RESEARCH ACCOMPLISHMENTS

. Enrolled 56 participants and brought collected specimens in five shipments to LBNL

. Collected information on possible PAH exposure by interviewer-administered
questionnaire

. Determined CYP1B1 expression in all specimens, detected a lower, but statistically not

significant level in controls compared to cases
. Determined CYFPIB! polymorphism at codon 432 and codon 453 in all specimens

. Determined DNA adducts, found no difference in adduct levels between cases and controls,
but a statistically significant difference in adduct levels of smokers and non-smokers

REPORTABLE OUTCOMES
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CONCLUSIONS

We have tested the hypothesis that individuals with higher CYP1B1 expression are at a higher risk
for breast cancer because they produce higher amounts of ultimate carcinogen. We found a slight,
but statistically not significant difference in CYPIBI expression levels of cases and controls, We
did not detect any difference in aromatic DNA adduct levels of cases and controls, only between

smokers and non-smokers. We did not find a correlation between the levels of CYP/BI expression
and DNA adducts.
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